首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55864篇
  免费   5710篇
  国内免费   5960篇
化学   38150篇
晶体学   325篇
力学   1462篇
综合类   801篇
数学   7973篇
物理学   18823篇
  2023年   810篇
  2022年   954篇
  2021年   1948篇
  2020年   1643篇
  2019年   1713篇
  2018年   1359篇
  2017年   1518篇
  2016年   1710篇
  2015年   1791篇
  2014年   2463篇
  2013年   4049篇
  2012年   2959篇
  2011年   3368篇
  2010年   2909篇
  2009年   3691篇
  2008年   3788篇
  2007年   3998篇
  2006年   3252篇
  2005年   2468篇
  2004年   2171篇
  2003年   2081篇
  2002年   1765篇
  2001年   1553篇
  2000年   1290篇
  1999年   1040篇
  1998年   950篇
  1997年   748篇
  1996年   782篇
  1995年   697篇
  1994年   692篇
  1993年   672篇
  1992年   666篇
  1991年   472篇
  1990年   357篇
  1989年   309篇
  1988年   325篇
  1987年   268篇
  1986年   250篇
  1985年   388篇
  1984年   263篇
  1983年   167篇
  1982年   342篇
  1981年   502篇
  1980年   454篇
  1979年   497篇
  1978年   381篇
  1977年   286篇
  1976年   252篇
  1974年   84篇
  1973年   171篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
By using the density functional theory (DFT) and Monte Carlo simulations (MCS) with the Heisenberg model, we have studied magnetic properties of the bulk perovskite YCrO3. The exchange couplings of the Heisenberg model and the magnetic anisotropy are investigated. The 110 direction in the crystalline structure of the compound has shown the minimum energy, it is the easy magnetic direction. Using Monte Carlo simulations, the magnetizations behavior, the effects of system parameters and the critical exponents of the compound YCrO3 are implemented. It is shown that the bulk perovskite YCrO3 belongs to the 3D Heisenberg universality class.  相似文献   
52.
53.
利用高温固相法成功制备了Er~(3+)单掺、Er~(3+)/Yb~(3+)共掺杂Ca_(12)Al_(14)O_(32)F_2上转换发光样品。在980 nm激光激发下,Er~(3+)单掺和Er~(3+)/Yb~(3+)共掺杂样品均呈现出较强的绿光(528,549 nm)和较弱的红光(655 nm)发射,分别归因于Er~(3+)离子的~2H_(11/2),~4S_(3/2)→~4I_(15/2)和~4F_(9/2)→~4I_(15/2)能级跃迁。随着Er离子浓度的增加,单掺杂样品上转换发光强度先增大后减小,最佳掺杂浓度为0.8%。共掺杂Yb~(3+)后,Er~(3+)的发光强度明显增大。还原气氛下合成的样品上转换发光强度增大约两倍,可能和笼中阴离子基团变化有关。发光强度和激发光功率的关系表明所得上转换发射为双光子吸收过程,借助Er~(3+)-Yb~(3+)体系能级结构详细讨论了上转换发射的跃迁机制。  相似文献   
54.
1,3-Azaprotio transfer of propargylic α-ketocarboxylate oximes, a new type of alkynyl oximes featuring an ester tether, has been explored by taking advantage of gold catalysis. The incorporation of an oxygen atom to the chain of alkynyl oximes led to the formation of two different oxa-cyclic nitrones. It was found that internal alkynyl oximes with an E-configuration deliver five-membered nitrones, whereas terminal alkynyl oximes with an E-configuration afford six-membered nitrones. DFT calculations on four possible pathways supported a stepwise formation of C−N and C−H bonds, in which a 1,3-acyloxy-migration competes with the 1,3-azaprotio-transfer, especially in the case of internal alkynyl oximes. The relative nucleophilic properties of oxygen in the carbonyl group and the nitrogen in the oxime, the electronic effects of alkynes, and the influence of the ring system have been investigated computationally.  相似文献   
55.
The first highly enantioselective arylogous Michael reaction (AMR) of 3-unsubstituted phthalides has been described. This phase-transfer methodology, which uses catalytic amounts of KOH/18-crown-6 catalyst in mesitylene in the presence of N,O-bis(trimethylsilyl)acetamide (BSA), gives access to a broad range of 3-monosubstituted phthalides with high levels of syn diastereoselectivity and good yields, starting from 3-unsubstituted derivatives and diverse α,β-unsaturated carbonyl compounds. The reaction also applies to unactivated 3-alkyl phthalides to afford 3,3-dialkyl derivatives. A plausible mechanism has been suggested. DFT analysis of possible transition states gives a rationale of the high syn diastereoselectivity observed and its correlation with the solvent's dielectric constant.  相似文献   
56.
Vera Deneva 《Molecular physics》2019,117(13):1613-1620
ABSTRACT

The tautomeric optical sensors based on 4-(phenyldiazenyl)naphthalen-1-ol exist in their pure enol tautomeric form as free ligands, while the addition of metal ion fully shifts the equilibrium towards the keto tautomer allowing a red shift in the measured absorbance. This effect is achieved when a side ionophore group is connected to a tautomeric backbone by a spacer in a way that stabilizes the enol form via hydrogen boding. When the ionophore captures the metal ion the keto form is stabilized due to C─O tautomeric group participation in the complex. In the current study, we model theoretically the effect of symmetric tweezer like ionophores (RCOXCOR, where X, being CH or N, is the linker to the tautomeric backbone) on the tautomeric state and complexation ability of 4-(phenyldiazenyl)naphthalen-1-ol containing ligands. It was found that enol form stabilisation is achieved when R?=?NMe2, independing on the linker. Both ligands are unsuitable for capturing alkali metal ions. The calculations predict that the complexation with alkali earth metal ions could lead to a full shift of the tautomeric equilibrium towards keto tautomer.  相似文献   
57.
New carbohydrazone ligand derived from the condensation of carbohydrazide and ethyl acetoacetate, diethyl 3,3′‐(carbonylbis (hydrazin‐2‐yl‐1‐ylidene))(3E,3′E)‐dibutyrate (H4EBC), and its divalent Co, Ni and Cu chelates have been isolated and characterized utilizing convenient methods. 1H‐NMR spectrum of H4EBC revealed the abundance of the enol isomer in solution, which was the opposite to what was shown by the solid IR. This was supported by comparing the theoretical IR of both keto and enol forms. In [Ni(H4EBC)Cl2(H2O)]·2H2O, H4EBC acts as a neutral NON tridentate ligand via the (C=O)carbonyl oxygen atom besides the two (C=N)azomethine nitrogen atoms, while in [Co(H4EBC)Cl2(2H2O)]·2H2O, H4EBC behaves as a neutral NN bidentate ligand through the two azomethine groups. Magnetic measurements inherent to their electronic spectra show that both Ni (II) and Co (II) chelates have octahedron coordination frameworks. On the other hand, the ligand behaves as a binegative tetradentate in [Cu2(H4EBC)Cl2]·H2O via the deprotonated (C=O)carbonyl groups of the ethyl acetoacetate framework and the two (C=N)azomethine groups. In the latter complex, the carbonyl group of the carbohydrazide moiety is converted to hydroxyl group. Cu (II) complex has a tetrahedral geometry according to ESR and electronic spectral data. The reaction of H4EBC with SmCl3·6H2O or LnCl3·7H2O gave single crystals of abnormal product (C16H16N4O4). The packing diagram of this crystal has a chain structure. The photoluminescence spectra of [Cu 2 (H 4 EBC)Cl 2 ]·H 2 O , [Co(H 4 EBC)Cl 2 (H 2 O) 2 ]·2H 2 O and [Ni(H 4 EBC)Cl 2 (H 2 O)]·2H 2 O display emission broad‐bands at 342, 321 and 337 nm, respectively. The microbial behavior of the synthesized moieties was investigated against various bacterial and fungal strains. [Cu2(H4EBC)Cl2]·H2O complex shows the same activity as ampicillin towards Escherichia coli and Staphylococcus aureus with inhibition zones of 26 and 22 mm, respectively. Antioxidant activity is determined using bleomycin‐dependent DNA damage assay besides erythrocyte hemolysis. Finally, in vitro cytotoxic activities against two different cell lines have been examined.  相似文献   
58.
For seeking high‐efficiency narrow‐band‐gap donor materials to enhance short‐circuit current density for organic solar cells, a series of oligo‐selenophene (OS) and oligo(3,4‐ethylenedioxyselenophene) (OEDOS) with various chain lengths were designed and characterized using density functional theory (DFT) and time‐dependent DFT calculations. Based on the results, it can be seen that with increasing chain length of the oligomers in both syn‐ and anti‐adding manners, the bond length alternation is decreased which indicates that the π‐electron delocalization is increased. Also, when the chain length is increased the electronic energy gap and the optical energy gap are decreased. It can be concluded that the syn‐(OS)n=10,14,15, anti‐(OS)n=14 and anti‐(OEDOS)n=7–12 oligomers can act as low‐band‐gap polymers. Therefore they can absorb more sunlight based on maximum wavelength (higher than 620 nm). Furthermore, a red shift in the simulated absorption spectra of (OS)n and (OEDOS)n donors is observed. It is found that (OS)n=14,15 with syn configuration of the extended oligomers is the most suitable donor for the design of high‐performance organic solar cells possessing a narrow electronic band gap, high exciton lifetime and broad and intense absorption spectra that cover the solar spectrum leading to complete light‐harvesting efficiency.  相似文献   
59.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   
60.
Na2FePO4F is a promising cathode material for a Na-ion battery because of its high electronic capacity and good cycle performance. In this work, first principle calculations combined with cluster expansion and the Monte Carlo method have been applied to analyze the charge and discharge processes of Na2FePO4F by examining the voltage curve and the phase diagram. As a result of the density functional theory calculation and experimental verification with structural analysis, we found that the most stable structure of Na1.5FePO4F has the P21/b11 space group, which has not been reported to date. The estimated voltage curve has two clear plateaus caused by the two-phase structure composed of P21/b11 Na1.5FePO4F and Pbcn Na2FePO4F or Na1FePO4F and separated along the c-axis direction. The phase diagram shows the stability of the phase-separated structure. Considering that Na2FePO4F has diffusion paths in the a- and c-axis directions, Na2FePO4F has both innerphase and interphase diffusion paths. We suggest that the stable two-phase structure and the diffusion paths to both the innerphase and interphases are a key for the very clear plateau. We challenge to simulate a nonequilibrium state at high rate discharge with high temperature by introducing a coordinate-dependent chemical potential. The simulation shows agreement with the experimental discharge curve on the disappearance of the two plateaus. © 2018 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号